Viewing file: md_k.h (9.58 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* md_k.h : kernel internal structure of the Linux MD driver Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#ifndef _MD_K_H #define _MD_K_H
#include <linux/kernel.h> // for panic()
#define MD_RESERVED 0UL #define LINEAR 1UL #define RAID0 2UL #define RAID1 3UL #define RAID5 4UL #define TRANSLUCENT 5UL #define HSM 6UL #define MULTIPATH 7UL #define MAX_PERSONALITY 8UL
static inline int pers_to_level (int pers) { switch (pers) { case MULTIPATH: return -4; case HSM: return -3; case TRANSLUCENT: return -2; case LINEAR: return -1; case RAID0: return 0; case RAID1: return 1; case RAID5: return 5; } panic("pers_to_level()"); return 0; }
static inline int level_to_pers (int level) { switch (level) { case -4: return MULTIPATH; case -3: return HSM; case -2: return TRANSLUCENT; case -1: return LINEAR; case 0: return RAID0; case 1: return RAID1; case 4: case 5: return RAID5; } return MD_RESERVED; }
typedef struct mddev_s mddev_t; typedef struct mdk_rdev_s mdk_rdev_t;
#if (MINORBITS != 8) #error MD doesnt handle bigger kdev yet #endif
#define MAX_MD_DEVS (1<<MINORBITS) /* Max number of md dev */
/* * Maps a kdev to an mddev/subdev. How 'data' is handled is up to * the personality. (eg. HSM uses this to identify individual LVs) */ typedef struct dev_mapping_s { mddev_t *mddev; void *data; } dev_mapping_t;
extern dev_mapping_t mddev_map [MAX_MD_DEVS];
static inline mddev_t * kdev_to_mddev (kdev_t dev) { if (MAJOR(dev) != MD_MAJOR) BUG(); return mddev_map[MINOR(dev)].mddev; }
/* * options passed in raidrun: */
#define MAX_CHUNK_SIZE (4096*1024)
/* * default readahead */ #define MD_READAHEAD vm_max_readahead
static inline int disk_faulty(mdp_disk_t * d) { return d->state & (1 << MD_DISK_FAULTY); }
static inline int disk_active(mdp_disk_t * d) { return d->state & (1 << MD_DISK_ACTIVE); }
static inline int disk_sync(mdp_disk_t * d) { return d->state & (1 << MD_DISK_SYNC); }
static inline int disk_spare(mdp_disk_t * d) { return !disk_sync(d) && !disk_active(d) && !disk_faulty(d); }
static inline int disk_removed(mdp_disk_t * d) { return d->state & (1 << MD_DISK_REMOVED); }
static inline void mark_disk_faulty(mdp_disk_t * d) { d->state |= (1 << MD_DISK_FAULTY); }
static inline void mark_disk_active(mdp_disk_t * d) { d->state |= (1 << MD_DISK_ACTIVE); }
static inline void mark_disk_sync(mdp_disk_t * d) { d->state |= (1 << MD_DISK_SYNC); }
static inline void mark_disk_spare(mdp_disk_t * d) { d->state = 0; }
static inline void mark_disk_removed(mdp_disk_t * d) { d->state = (1 << MD_DISK_FAULTY) | (1 << MD_DISK_REMOVED); }
static inline void mark_disk_inactive(mdp_disk_t * d) { d->state &= ~(1 << MD_DISK_ACTIVE); }
static inline void mark_disk_nonsync(mdp_disk_t * d) { d->state &= ~(1 << MD_DISK_SYNC); }
/* * MD's 'extended' device */ struct mdk_rdev_s { struct md_list_head same_set; /* RAID devices within the same set */ struct md_list_head all; /* all RAID devices */ struct md_list_head pending; /* undetected RAID devices */
kdev_t dev; /* Device number */ kdev_t old_dev; /* "" when it was last imported */ unsigned long size; /* Device size (in blocks) */ mddev_t *mddev; /* RAID array if running */ unsigned long last_events; /* IO event timestamp */
struct block_device *bdev; /* block device handle */
mdp_super_t *sb; unsigned long sb_offset;
int alias_device; /* device alias to the same disk */ int faulty; /* if faulty do not issue IO requests */ int desc_nr; /* descriptor index in the superblock */ };
/* * disk operations in a working array: */ #define DISKOP_SPARE_INACTIVE 0 #define DISKOP_SPARE_WRITE 1 #define DISKOP_SPARE_ACTIVE 2 #define DISKOP_HOT_REMOVE_DISK 3 #define DISKOP_HOT_ADD_DISK 4
typedef struct mdk_personality_s mdk_personality_t;
struct mddev_s { void *private; mdk_personality_t *pers; int __minor; mdp_super_t *sb; int nb_dev; struct md_list_head disks; int sb_dirty; mdu_param_t param; int ro; unsigned long curr_resync; /* blocks scheduled */ unsigned long resync_mark; /* a recent timestamp */ unsigned long resync_mark_cnt;/* blocks written at resync_mark */ char *name; int recovery_running; struct semaphore reconfig_sem; struct semaphore recovery_sem; struct semaphore resync_sem; atomic_t active;
atomic_t recovery_active; /* blocks scheduled, but not written */ md_wait_queue_head_t recovery_wait;
struct md_list_head all_mddevs; };
struct mdk_personality_s { char *name; int (*make_request)(mddev_t *mddev, int rw, struct buffer_head * bh); int (*run)(mddev_t *mddev); int (*stop)(mddev_t *mddev); int (*status)(char *page, mddev_t *mddev); int (*error_handler)(mddev_t *mddev, kdev_t dev);
/* * Some personalities (RAID-1, RAID-5) can have disks hot-added and * hot-removed. Hot removal is different from failure. (failure marks * a disk inactive, but the disk is still part of the array) The interface * to such operations is the 'pers->diskop()' function, can be NULL. * * the diskop function can change the pointer pointing to the incoming * descriptor, but must do so very carefully. (currently only * SPARE_ACTIVE expects such a change) */ int (*diskop) (mddev_t *mddev, mdp_disk_t **descriptor, int state);
int (*stop_resync)(mddev_t *mddev); int (*restart_resync)(mddev_t *mddev); int (*sync_request)(mddev_t *mddev, unsigned long block_nr); };
/* * Currently we index md_array directly, based on the minor * number. This will have to change to dynamic allocation * once we start supporting partitioning of md devices. */ static inline int mdidx (mddev_t * mddev) { return mddev->__minor; }
static inline kdev_t mddev_to_kdev(mddev_t * mddev) { return MKDEV(MD_MAJOR, mdidx(mddev)); }
extern mdk_rdev_t * find_rdev(mddev_t * mddev, kdev_t dev); extern mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr); extern mdp_disk_t *get_spare(mddev_t *mddev);
/* * iterates through some rdev ringlist. It's safe to remove the * current 'rdev'. Dont touch 'tmp' though. */ #define ITERATE_RDEV_GENERIC(head,field,rdev,tmp) \ \ for (tmp = head.next; \ rdev = md_list_entry(tmp, mdk_rdev_t, field), \ tmp = tmp->next, tmp->prev != &head \ ; ) /* * iterates through the 'same array disks' ringlist */ #define ITERATE_RDEV(mddev,rdev,tmp) \ ITERATE_RDEV_GENERIC((mddev)->disks,same_set,rdev,tmp)
/* * Same as above, but assumes that the device has rdev->desc_nr numbered * from 0 to mddev->nb_dev, and iterates through rdevs in ascending order. */ #define ITERATE_RDEV_ORDERED(mddev,rdev,i) \ for (i = 0; rdev = find_rdev_nr(mddev, i), i < mddev->nb_dev; i++)
/* * Iterates through all 'RAID managed disks' */ #define ITERATE_RDEV_ALL(rdev,tmp) \ ITERATE_RDEV_GENERIC(all_raid_disks,all,rdev,tmp)
/* * Iterates through 'pending RAID disks' */ #define ITERATE_RDEV_PENDING(rdev,tmp) \ ITERATE_RDEV_GENERIC(pending_raid_disks,pending,rdev,tmp)
/* * iterates through all used mddevs in the system. */ #define ITERATE_MDDEV(mddev,tmp) \ \ for (tmp = all_mddevs.next; \ mddev = md_list_entry(tmp, mddev_t, all_mddevs), \ tmp = tmp->next, tmp->prev != &all_mddevs \ ; )
static inline int lock_mddev (mddev_t * mddev) { return down_interruptible(&mddev->reconfig_sem); }
static inline void unlock_mddev (mddev_t * mddev) { up(&mddev->reconfig_sem); }
#define xchg_values(x,y) do { __typeof__(x) __tmp = x; \ x = y; y = __tmp; } while (0)
typedef struct mdk_thread_s { void (*run) (void *data); void *data; md_wait_queue_head_t wqueue; unsigned long flags; struct completion *event; struct task_struct *tsk; const char *name; } mdk_thread_t;
#define THREAD_WAKEUP 0
#define MAX_DISKNAME_LEN 64
typedef struct dev_name_s { struct md_list_head list; kdev_t dev; char namebuf [MAX_DISKNAME_LEN]; char *name; } dev_name_t;
#define __wait_event_lock_irq(wq, condition, lock) \ do { \ wait_queue_t __wait; \ init_waitqueue_entry(&__wait, current); \ \ add_wait_queue(&wq, &__wait); \ for (;;) { \ set_current_state(TASK_UNINTERRUPTIBLE); \ if (condition) \ break; \ spin_unlock_irq(&lock); \ run_task_queue(&tq_disk); \ schedule(); \ spin_lock_irq(&lock); \ } \ current->state = TASK_RUNNING; \ remove_wait_queue(&wq, &__wait); \ } while (0)
#define wait_event_lock_irq(wq, condition, lock) \ do { \ if (condition) \ break; \ __wait_event_lock_irq(wq, condition, lock); \ } while (0)
#define __wait_disk_event(wq, condition) \ do { \ wait_queue_t __wait; \ init_waitqueue_entry(&__wait, current); \ \ add_wait_queue(&wq, &__wait); \ for (;;) { \ set_current_state(TASK_UNINTERRUPTIBLE); \ if (condition) \ break; \ run_task_queue(&tq_disk); \ schedule(); \ } \ current->state = TASK_RUNNING; \ remove_wait_queue(&wq, &__wait); \ } while (0)
#define wait_disk_event(wq, condition) \ do { \ if (condition) \ break; \ __wait_disk_event(wq, condition); \ } while (0)
#endif
|