Viewing file:      tgmath.h (17.37 KB)      -rw-r--r-- Select action/file-type:    (+) |   (+) |   (+) | Code (+) | Session (+) |   (+) | SDB (+) |   (+) |   (+) |   (+) |   (+) |   (+) |
 
/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004    Free Software Foundation, Inc.    This file is part of the GNU C Library.
     The GNU C Library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.
     The GNU C Library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.
     You should have received a copy of the GNU Lesser General Public    License along with the GNU C Library; if not, write to the Free    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA    02111-1307 USA.  */
  /*  *    ISO C99 Standard: 7.22 Type-generic math    <tgmath.h>  */
  #ifndef _TGMATH_H #define _TGMATH_H    1
  /* Include the needed headers.  */ #include <math.h> #include <complex.h>
 
  /* Since `complex' is currently not really implemented in most C compilers    and if it is implemented, the implementations differ.  This makes it    quite difficult to write a generic implementation of this header.  We    do not try this for now and instead concentrate only on GNU CC.  Once    we have more information support for other compilers might follow.  */
  #if __GNUC_PREREQ (2, 7)
  # ifdef __NO_LONG_DOUBLE_MATH #  define __tgml(fct) fct # else #  define __tgml(fct) fct ## l # endif
  /* This is ugly but unless gcc gets appropriate builtins we have to do    something like this.  Don't ask how it works.  */
  /* 1 if 'type' is a floating type, 0 if 'type' is an integer type.    Allows for _Bool.  Expands to an integer constant expression.  */ # define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
  /* The tgmath real type for T, where E is 0 if T is an integer type and    1 for a floating type.  */ # define __tgmath_real_type_sub(T, E) \   __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0          \          : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
  /* The tgmath real type of EXPR.  */ # define __tgmath_real_type(expr) \   __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
 
  /* We have two kinds of generic macros: to support functions which are    only defined on real valued parameters and those which are defined    for complex functions as well.  */ # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \      (__extension__ ({ __tgmath_real_type (Val) __tgmres;              \                if (sizeof (Val) == sizeof (double)              \                || __builtin_classify_type (Val) != 8)          \              __tgmres = Fct (Val);                      \                else if (sizeof (Val) == sizeof (float))              \              __tgmres = Fct##f (Val);                  \                else                              \              __tgmres = __tgml(Fct) (Val);                  \                __tgmres; }))
  # define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \      (__extension__ ({ RetType __tgmres;                      \                if (sizeof (Val) == sizeof (double)              \                || __builtin_classify_type (Val) != 8)          \              __tgmres = Fct (Val);                      \                else if (sizeof (Val) == sizeof (float))              \              __tgmres = Fct##f (Val);                  \                else                              \              __tgmres = __tgml(Fct) (Val);                  \                __tgmres; }))
  # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \      (__extension__ ({ __tgmath_real_type (Val1) __tgmres;              \                if (sizeof (Val1) == sizeof (double)              \                || __builtin_classify_type (Val1) != 8)          \              __tgmres = Fct (Val1, Val2);                  \                else if (sizeof (Val1) == sizeof (float))          \              __tgmres = Fct##f (Val1, Val2);              \                else                              \              __tgmres = __tgml(Fct) (Val1, Val2);              \                __tgmres; }))
  # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \      (__extension__ ({ __typeof((__tgmath_real_type (Val1)) 0              \                 + (__tgmath_real_type (Val2)) 0) __tgmres;    \                if ((sizeof (Val1) > sizeof (double)              \                 || sizeof (Val2) > sizeof (double))              \                && __builtin_classify_type ((Val1) + (Val2)) == 8) \              __tgmres = __tgml(Fct) (Val1, Val2);              \                else if (sizeof (Val1) == sizeof (double)          \                 || sizeof (Val2) == sizeof (double)          \                 || __builtin_classify_type (Val1) != 8          \                 || __builtin_classify_type (Val2) != 8)          \              __tgmres = Fct (Val1, Val2);                  \                else                              \              __tgmres = Fct##f (Val1, Val2);              \                __tgmres; }))
  # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \      (__extension__ ({ __typeof((__tgmath_real_type (Val1)) 0              \                 + (__tgmath_real_type (Val2)) 0) __tgmres;    \                if ((sizeof (Val1) > sizeof (double)              \                 || sizeof (Val2) > sizeof (double))              \                && __builtin_classify_type ((Val1) + (Val2)) == 8) \              __tgmres = __tgml(Fct) (Val1, Val2, Val3);          \                else if (sizeof (Val1) == sizeof (double)          \                 || sizeof (Val2) == sizeof (double)          \                 || __builtin_classify_type (Val1) != 8          \                 || __builtin_classify_type (Val2) != 8)          \              __tgmres = Fct (Val1, Val2, Val3);              \                else                              \              __tgmres = Fct##f (Val1, Val2, Val3);              \                __tgmres; }))
  # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \      (__extension__ ({ __typeof((__tgmath_real_type (Val1)) 0              \                 + (__tgmath_real_type (Val2)) 0              \                 + (__tgmath_real_type (Val3)) 0) __tgmres;    \                if ((sizeof (Val1) > sizeof (double)              \                 || sizeof (Val2) > sizeof (double)              \                 || sizeof (Val3) > sizeof (double))              \                && __builtin_classify_type ((Val1) + (Val2)          \                                + (Val3)) == 8)          \              __tgmres = __tgml(Fct) (Val1, Val2, Val3);          \                else if (sizeof (Val1) == sizeof (double)          \                 || sizeof (Val2) == sizeof (double)          \                 || sizeof (Val3) == sizeof (double)          \                 || __builtin_classify_type (Val1) != 8          \                 || __builtin_classify_type (Val2) != 8          \                 || __builtin_classify_type (Val3) != 8)          \              __tgmres = Fct (Val1, Val2, Val3);              \                else                              \              __tgmres = Fct##f (Val1, Val2, Val3);              \                __tgmres; }))
  /* XXX This definition has to be changed as soon as the compiler understands    the imaginary keyword.  */ # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \      (__extension__ ({ __tgmath_real_type (Val) __tgmres;              \                if (sizeof (__real__ (Val)) > sizeof (double)          \                && __builtin_classify_type (__real__ (Val)) == 8)  \              {                              \                if (sizeof (__real__ (Val)) == sizeof (Val))          \                  __tgmres = __tgml(Fct) (Val);              \                else                              \                  __tgmres = __tgml(Cfct) (Val);              \              }                              \                else if (sizeof (__real__ (Val)) == sizeof (double)    \                 || __builtin_classify_type (__real__ (Val))   \                    != 8)                      \              {                              \                if (sizeof (__real__ (Val)) == sizeof (Val))          \                  __tgmres = Fct (Val);                  \                else                              \                  __tgmres = Cfct (Val);                  \              }                              \                else                              \              {                              \                if (sizeof (__real__ (Val)) == sizeof (Val))          \                  __tgmres = Fct##f (Val);                  \                else                              \                  __tgmres = Cfct##f (Val);                  \              }                              \                __tgmres; }))
  /* XXX This definition has to be changed as soon as the compiler understands    the imaginary keyword.  */ # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \      (__extension__ ({ __tgmath_real_type (Val) __tgmres;              \                if (sizeof (__real__ (Val)) > sizeof (double)          \                && __builtin_classify_type (__real__ (Val)) == 8)  \              {                              \                if (sizeof (__real__ (Val)) == sizeof (Val))          \                  __tgmres = __tgml(Fct) (Val);              \                else                              \                  __tgmres = __tgml(Cfct) (Val);              \              }                              \                else if (sizeof (__real__ (Val)) == sizeof (double)    \                 || __builtin_classify_type (__real__ (Val))   \                    != 8)                      \              {                              \                if (sizeof (__real__ (Val)) == sizeof (Val))          \                  __tgmres = Fct (Val);                  \                else                              \                  __tgmres = Cfct (Val);                  \              }                              \                else                              \              {                              \                if (sizeof (__real__ (Val)) == sizeof (Val))          \                  __tgmres = Fct##f (Val);                  \                else                              \                  __tgmres = Cfct##f (Val);                  \              }                              \                __real__ __tgmres; }))
  /* XXX This definition has to be changed as soon as the compiler understands    the imaginary keyword.  */ # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \      (__extension__ ({ __typeof((__tgmath_real_type (Val1)) 0              \                 + (__tgmath_real_type (Val2)) 0) __tgmres;    \                if ((sizeof (__real__ (Val1)) > sizeof (double)          \                 || sizeof (__real__ (Val2)) > sizeof (double))    \                && __builtin_classify_type (__real__ (Val1)          \                                + __real__ (Val2))     \                   == 8)                          \              {                              \                if (sizeof (__real__ (Val1)) == sizeof (Val1)      \                    && sizeof (__real__ (Val2)) == sizeof (Val2))  \                  __tgmres = __tgml(Fct) (Val1, Val2);          \                else                              \                  __tgmres = __tgml(Cfct) (Val1, Val2);          \              }                              \                else if (sizeof (__real__ (Val1)) == sizeof (double)   \                 || sizeof (__real__ (Val2)) == sizeof(double) \                 || (__builtin_classify_type (__real__ (Val1)) \                     != 8)                      \                 || (__builtin_classify_type (__real__ (Val2)) \                     != 8))                      \              {                              \                if (sizeof (__real__ (Val1)) == sizeof (Val1)      \                    && sizeof (__real__ (Val2)) == sizeof (Val2))  \                  __tgmres = Fct (Val1, Val2);              \                else                              \                  __tgmres = Cfct (Val1, Val2);              \              }                              \                else                              \              {                              \                if (sizeof (__real__ (Val1)) == sizeof (Val1)      \                    && sizeof (__real__ (Val2)) == sizeof (Val2))  \                  __tgmres = Fct##f (Val1, Val2);              \                else                              \                  __tgmres = Cfct##f (Val1, Val2);              \              }                              \                __tgmres; })) #else # error "Unsupported compiler; you cannot use <tgmath.h>" #endif
 
  /* Unary functions defined for real and complex values.  */
 
  /* Trigonometric functions.  */
  /* Arc cosine of X.  */ #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) /* Arc sine of X.  */ #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) /* Arc tangent of X.  */ #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) /* Arc tangent of Y/X.  */ #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
  /* Cosine of X.  */ #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) /* Sine of X.  */ #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) /* Tangent of X.  */ #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
 
  /* Hyperbolic functions.  */
  /* Hyperbolic arc cosine of X.  */ #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) /* Hyperbolic arc sine of X.  */ #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) /* Hyperbolic arc tangent of X.  */ #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
  /* Hyperbolic cosine of X.  */ #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) /* Hyperbolic sine of X.  */ #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) /* Hyperbolic tangent of X.  */ #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
 
  /* Exponential and logarithmic functions.  */
  /* Exponential function of X.  */ #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
  /* Break VALUE into a normalized fraction and an integral power of 2.  */ #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
  /* X times (two to the EXP power).  */ #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
  /* Natural logarithm of X.  */ #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
  /* Base-ten logarithm of X.  */ #ifdef __USE_GNU # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10) #else # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) #endif
  /* Return exp(X) - 1.  */ #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
  /* Return log(1 + X).  */ #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
  /* Return the base 2 signed integral exponent of X.  */ #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
  /* Compute base-2 exponential of X.  */ #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
  /* Compute base-2 logarithm of X.  */ #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
 
  /* Power functions.  */
  /* Return X to the Y power.  */ #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
  /* Return the square root of X.  */ #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
  /* Return `sqrt(X*X + Y*Y)'.  */ #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
  /* Return the cube root of X.  */ #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
 
  /* Nearest integer, absolute value, and remainder functions.  */
  /* Smallest integral value not less than X.  */ #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
  /* Absolute value of X.  */ #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
  /* Largest integer not greater than X.  */ #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
  /* Floating-point modulo remainder of X/Y.  */ #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
  /* Round X to integral valuein floating-point format using current    rounding direction, but do not raise inexact exception.  */ #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
  /* Round X to nearest integral value, rounding halfway cases away from    zero.  */ #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
  /* Round X to the integral value in floating-point format nearest but    not larger in magnitude.  */ #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
  /* Compute remainder of X and Y and put in *QUO a value with sign of x/y    and magnitude congruent `mod 2^n' to the magnitude of the integral    quotient x/y, with n >= 3.  */ #define remquo(Val1, Val2, Val3) \      __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
  /* Round X to nearest integral value according to current rounding    direction.  */ #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint) #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)
  /* Round X to nearest integral value, rounding halfway cases away from    zero.  */ #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround) #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)
 
  /* Return X with its signed changed to Y's.  */ #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
  /* Error and gamma functions.  */ #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
 
  /* Return the integer nearest X in the direction of the    prevailing rounding mode.  */ #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
  /* Return X + epsilon if X < Y, X - epsilon if X > Y.  */ #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) #define nexttoward(Val1, Val2) \      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
  /* Return the remainder of integer divison X / Y with infinite precision.  */ #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
  /* Return X times (2 to the Nth power).  */ #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb) #endif
  /* Return X times (2 to the Nth power).  */ #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
  /* Return X times (2 to the Nth power).  */ #define scalbln(Val1, Val2) \      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
  /* Return the binary exponent of X, which must be nonzero.  */ #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)
 
  /* Return positive difference between X and Y.  */ #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
  /* Return maximum numeric value from X and Y.  */ #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
  /* Return minimum numeric value from X and Y.  */ #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
 
  /* Multiply-add function computed as a ternary operation.  */ #define fma(Val1, Val2, Val3) \      __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
 
  /* Absolute value, conjugates, and projection.  */
  /* Argument value of Z.  */ #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
  /* Complex conjugate of Z.  */ #define conj(Val) __TGMATH_UNARY_REAL_IMAG (Val, conj, conj)
  /* Projection of Z onto the Riemann sphere.  */ #define cproj(Val) __TGMATH_UNARY_REAL_IMAG (Val, cproj, cproj)
 
  /* Decomposing complex values.  */
  /* Imaginary part of Z.  */ #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
  /* Real part of Z.  */ #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
  #endif /* tgmath.h */ 
  |