!C99Shell v. 1.0 pre-release build #16!

Software: Apache/2.0.54 (Fedora). PHP/5.0.4 

uname -a: Linux mina-info.me 2.6.17-1.2142_FC4smp #1 SMP Tue Jul 11 22:57:02 EDT 2006 i686 

uid=48(apache) gid=48(apache) groups=48(apache)
context=system_u:system_r:httpd_sys_script_t
 

Safe-mode: OFF (not secure)

/usr/include/asm/   drwxr-xr-x
Free 5.03 GB of 27.03 GB (18.62%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     bitops.h (8.04 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#ifndef _I386_BITOPS_H
#define _I386_BITOPS_H

/*
* Copyright 1992, Linus Torvalds.
*/

#include <linux/config.h>

/*
* These have to be done with inline assembly: that way the bit-setting
* is guaranteed to be atomic. All bit operations return 0 if the bit
* was cleared before the operation and != 0 if it was not.
*
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
*/

#define ADDR (*(volatile long *) addr)

/**
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered.  See __set_bit()
* if you do not require the atomic guarantees.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void set_bit(int nr, volatile void * addr)
{
    __asm__ __volatile__(
        "btsl %1,%0"
        :"=m" (ADDR)
        :"Ir" (nr));
}

/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __set_bit(int nr, volatile void * addr)
{
    __asm__(
        "btsl %1,%0"
        :"=m" (ADDR)
        :"Ir" (nr));
}

/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit() is atomic and may not be reordered.  However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
static __inline__ void clear_bit(int nr, volatile void * addr)
{
    __asm__ __volatile__(
        "btrl %1,%0"
        :"=m" (ADDR)
        :"Ir" (nr));
}
#define smp_mb__before_clear_bit()    barrier()
#define smp_mb__after_clear_bit()    barrier()

/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __change_bit(int nr, volatile void * addr)
{
    __asm__ __volatile__(
        "btcl %1,%0"
        :"=m" (ADDR)
        :"Ir" (nr));
}

/**
* change_bit - Toggle a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void change_bit(int nr, volatile void * addr)
{
    __asm__ __volatile__(
        "btcl %1,%0"
        :"=m" (ADDR)
        :"Ir" (nr));
}

/**
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.  
* It also implies a memory barrier.
*/
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__ __volatile__(
        "btsl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit),"=m" (ADDR)
        :"Ir" (nr) : "memory");
    return oldbit;
}

/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.  
* If two examples of this operation race, one can appear to succeed
* but actually fail.  You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__(
        "btsl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit),"=m" (ADDR)
        :"Ir" (nr));
    return oldbit;
}

/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.  
* It also implies a memory barrier.
*/
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__ __volatile__(
        "btrl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit),"=m" (ADDR)
        :"Ir" (nr) : "memory");
    return oldbit;
}

/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.  
* If two examples of this operation race, one can appear to succeed
* but actually fail.  You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__(
        "btrl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit),"=m" (ADDR)
        :"Ir" (nr));
    return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__ __volatile__(
        "btcl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit),"=m" (ADDR)
        :"Ir" (nr) : "memory");
    return oldbit;
}

/**
* test_and_change_bit - Change a bit and return its new value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.  
* It also implies a memory barrier.
*/
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__ __volatile__(
        "btcl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit),"=m" (ADDR)
        :"Ir" (nr) : "memory");
    return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static int test_bit(int nr, const volatile void * addr);
#endif

static __inline__ int constant_test_bit(int nr, const volatile void * addr)
{
    return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}

static __inline__ int variable_test_bit(int nr, volatile void * addr)
{
    int oldbit;

    __asm__ __volatile__(
        "btl %2,%1\n\tsbbl %0,%0"
        :"=r" (oldbit)
        :"m" (ADDR),"Ir" (nr));
    return oldbit;
}

#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
constant_test_bit((nr),(addr)) : \
variable_test_bit((nr),(addr)))

/**
* find_first_zero_bit - find the first zero bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
*/
static __inline__ int find_first_zero_bit(void * addr, unsigned size)
{
    int d0, d1, d2;
    int res;

    if (!size)
        return 0;
    /* This looks at memory. Mark it volatile to tell gcc not to move it around */
    __asm__ __volatile__(
        "movl $-1,%%eax\n\t"
        "xorl %%edx,%%edx\n\t"
        "repe; scasl\n\t"
        "je 1f\n\t"
        "xorl -4(%%edi),%%eax\n\t"
        "subl $4,%%edi\n\t"
        "bsfl %%eax,%%edx\n"
        "1:\tsubl %%ebx,%%edi\n\t"
        "shll $3,%%edi\n\t"
        "addl %%edi,%%edx"
        :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
        :"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
    return res;
}

/**
* find_next_zero_bit - find the first zero bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
    unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
    int set = 0, bit = offset & 31, res;
    
    if (bit) {
        /*
         * Look for zero in first byte
         */
        __asm__("bsfl %1,%0\n\t"
            "jne 1f\n\t"
            "movl $32, %0\n"
            "1:"
            : "=r" (set)
            : "r" (~(*p >> bit)));
        if (set < (32 - bit))
            return set + offset;
        set = 32 - bit;
        p++;
    }
    /*
     * No zero yet, search remaining full bytes for a zero
     */
    res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
    return (offset + set + res);
}

/**
* ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
static __inline__ unsigned long ffz(unsigned long word)
{
    __asm__("bsfl %1,%0"
        :"=r" (word)
        :"r" (~word));
    return word;
}

#warning This includefile is not available on all architectures.
#warning Using kernel headers in userspace: atomicity not guaranteed

#endif /* _I386_BITOPS_H */

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #16 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0041 ]--